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Electrical resistivity measurement through
metal casing

Clifford J. Schenkel* and H. Frank Morrison*

ABSTRACT

Methods using dc electrical arrays to measure for-
mation resistivity through casing have relied on ap-
proximate forms for the current and potential distribu-
tions to derive a simple relationship between the
formation resistivity and the transverse resistance
calculated from measurements of the potential and its
second derivative inside the casing. We have derived a
numerical solution for the potentials and their deriva-
tives to examine the accuracy of the approximate
forms for casing of finite-length, annular zones of
varying radius, and for vertical discontinuities such as
layers or abrupt changes in annular zone radius. For
typical conductivity contrasts between the casing and
formation, the approximate relationships may be off

by as much as 60 percent for long casing and may show
variations of 20 to 30 percent as the electrode array
moves along the casing. In principle an iterative
scheme could be devised to correct the readings if high
accuracy was required. The numerical results show
that to first order the current flow from the casing is
radial, and that all the analytic expressions based on
this assumption for evaluating layer resolution and the
effects of annular layers are valid. An interesting
byproduct of this study has been the discovery that the
distortion of the potentials in a nearby well by an
annular disk (e.g., an injected steam zone) surrounding
the current injection well is greater if the injection well
is cased. Crosswell resistivity surveys appear feasible
if one of the wells is cased.

INTRODUCTION The practical field embodiment of this idea by Vail et al.
(1993) uses a multielectrode configuration that first uses a
closely coupled array to determine the casing conductance and
then asecondarraycomprised of some of theelectrodes of the
first plus an electrode at “infinity” to measure the drop in
electric field in the casing to determine the leakage current and
hence T. This device is called the Through-Casing Resistivity
Tool (TCRT™), and with several technical modifications to
correct for second order effects, it has been used with excelIent
results (Vail et al., 1993).

Recent studies by Kaufman (1990) and a series of patents
by Kaufman (1989), Vail (1989a, b), and Gard et al. (1989)
have demonstrated the practical feasibility of measuring
formation resistivity with direct current (dc) electrical de-
vices that operate within a cased well.

The principles of such measurements are straightforward.
The current from a point source within a cased hole flows
away by two major paths; along the casing and by “leakage”
from the casing into the formation. The amount flowing
along the casing is determined primarily by the casing
conductance  , and the amount leaking into the formation
is controlled by a transverse resistance T, which is basically
the resistance offered to current leaving the metal casing and
flowing radially into the formation. This resistance is also
referred to as the contact resistance, and it in turn is
proportional to the formation resistivity 

While it has been demonstrated that in infinite pipes in
infinite media the transverse resistance can be measured and
that it is proportional to the formation resistivity, it is not
clear what the relationship is between these two parameters
in practical situations of finite-casing length, variable inva-
sion zones, or layered formations.

Kaufman’s fundamental paper (Kaufman, 1990) presented
a solution for Poisson’s equation for a point source of
current  on the axis of an infinitely long borehole of a
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radius a in a uniform medium. The borehole was either filled
with uniform high conductivity material (a solid conducting
cylinder of conductivity a,) or cased with a conducting
metal pipe of radius a, thickness  and conductivity  In
the former, the borehole “conductance”  is given by

 in the latter by =  These “conductanc-
es,” which actually have the units of S l m as defined by
Kaufman are the reciprocals of the unit length longitudinal
resistance of the casing. The final expressions for the potential
field  and field derivatives along the casing involve straight-
forward integrals of modified Bessel functions that are not
simple to interpret in terms of the physics of solutions. Plotting
the second vertical derivative of the potential  it is found
that there is a region where  is approximately constant.
Kaufman found that the electric field  in this intermediate
zone can be described approximately by

and

(1)

and correspondingly

4
   

 
(2)

Schenkel(l991) termed  the conduction length 6, and it
describes the distance over which l/e of the injected current
leaks out of the pipe into the formation. Kaufman (1990) noted
further that in the intermediate zone, if    then the second
derivative of the potential is almost constant and equal to

 
4 (3)

This equation basically solves the problem of logging
through casing. With an apparatus designed to operate in the
intermediate range, measurements of the second derivative
of the potential along the borehole, the current, and a
knowledge of  (from another measurement to be made
independently), allow one to derive the formation conduc-
tivity. Kaufman (1990) then used the simple behavior of the
potential derivatives in the intermediate zone to bring in the
analogy of a transmission line to represent the solution.

In his transmission line analogy the physics of the solution
is more easily seen. In an insulating formation the voltage
drop in a segment is given simply by Ohm’s law. If the
surrounding formation is not insulating, then current will
leave the segment via some resistance and with a driving
voltage equal to the mean voltage on the segment. The
leakage current will just equal the drop in axial current along
the segment. Kaufman (1990) derives this relationship using
a quantity T, the inverse of the unit length leakage conduc-
tance (unit of  m), to describe the resistance to current
flow into the formation. With this quantity he finds the
governing equation to be

 1
4 TS, l

(4)

This equation itself is extremely useful since it permits the
recovery of T (which we will see is related to  from
measurements of potentials only.

From the solutions to the transmission
Kaufman derives the expression for  viz.

 

line

  1
4

II
  l

equation,

(5)

(6)

We see quite clearly the direct relationship to the early
solution of equation (2) and find that T is in fact equal to 

To test the accuracy of the approximations, we first
calculated T from equation (4) using the values of 4 and 4”

The simple formula for estimating  depends on the

from the analytic solution for an infinitely long solid cylinder
that was derived by Kaufman. We used the solid pipe for

assumption that the current flow into the formation is purely

simplicity, and the results shown in Figure 1 are for pipes of
varying contrast  with the formation. The ordinate is

radial, and since this is only an approximation in the infinite

the ratio of T calculated from equation (4) to the actual
formation resistivity  and the abscissa is the ratio of the

pipe, we decided to investigate the exact form of the

distance from the current source to the measuring point
normalized by the diameter of the pipe (z/a). There is a

solutions for finite-length pipes, for pipes intersecting layers,

limited range over which T equals  For all large contrasts,
T is consistently larger than  in the intermediate zone, and

and for cylindrical annuli (disks) around the casing. We

for the realistic situation of steel pipe in a formation of
100  l m resistivity the error may be greater than 60 percent.

anticipated that the conduction length is so great for typical

As the contrast increases even more, for example as the
casing approaches prefect conductivity, T will actually go to

casing and formation resistivity that infinite pipe is rarely a

infinity as clearly pointed out by Kaufman [ 1990, equation 51].
In such a situation, an infinite pipe of uniform potential and

good assumption (especially as a logging tool approaches the

uniform radial current is unrealizable. The finite conductance
and finite length always produce a longitudinal component of
leakage current and avoids infinite values for T.

FIG. 1. Ratio of the transverse resistance to formation
resistivity  for different conductivity ratios calculated
for the infinite solid cylinder.
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end), that a layer might easily perturb the current vector well
before the tool enters the layer, and that variation in an
annular layer (an invaded zone) might also perturb the
current vectors enough to seriously affect estimates of the
formation resistivity.

where

In this study, we develop a numerical solution for a
finite-length, fluid-filled casing in a layered and radially
inhomogeneous medium. This solution was verified by com-
paring the numerically calculated potentials for a long solid
cylinder in a half-space to those obtained analytically for a
semi-infinite cylinder. We study the problem using an elec-
trode array similar to the early logging tool of Vail (1989a). In
this configuration, two current and three potential elec-
trodes, moved down the well, are in contact with the casing
and have fixed separations. We present the results in terms
of T as defined in equation (4) because this is the approach
suggested by Kaufman (1990), and it illustrates the funda-
mental nature of the response that can be expected with any
such array in nonuniform media.

INTEGRAL EQUATION FORMULATION

The surface integral equation technique (Eloranta, 1986),
used to calculate the potentials, models a borehole fluid,
casing, and layer as inhomogeneities in a background half-
space. It is assumed that the sources are on the vertical
z-axis and the casing and inhomogeneities have axial sym-
metry with z so that the cylindrical coordinate system can be
used. Because of axial symmetry, the field can be described
by its radial (x) and vertical (z) components.

Application of Green’s theorem to Poisson’s equation and
the boundary conditions gives a Fredholm integral equation
of the second kind for the potential function 6(r):

   

(7)
where  is the background conductivity,  is the disturb-
ing body conductivity, and   and  are the field point,
source density point, and outward unit surface normal
vector on S, respectively.

The axisymmetric half-space Green’s function used for
this problem is (see, e.g., Schenkel and Morrison, 1990):

   
 

 

    (8)
where  is the Bessel function of order zero, and the
primed and unprimed values are the locations of the source
and field points, respectively.

The integral equation (7) is solved by expanding the
unknown function into a series of N piecewise constant basis
functions. The Dirac delta weighting functions are then used
to satisfy equation (7) at each of the N discrete points on the
region of interest. The integral over the region is approxi-
mated as a summation of integrals over the subsections.
Thus, equation (7) can be approximated by

       
 

(9)

     

 (10)

and n is the directional cosine for the nth subsection. This
matrix equation can be solved to determine the unknown
potential functions. Once the surface potentials are found,
equation (9) is used to calculate the potential at the field point.

For the casing, or any other annular-shaped objects, there
are two components, i.e., radial and vertical, to the surface
integral. Equation (10) can now be expressed as

       (11)

FIG. 2. The two surface elements associated with an annular
segment. The horizontal disk (a) defines the top and bottom
annular surfaces. The vertical cylindrical shell (b) represents
the inner and outer walls of the annulus.



Electrical Measurement through Metal Casing 1075

Figure 2 illustrates the two surface types associated with an
annular object. The  -integral defines the flat horizontal
ring surface (disk) of the top and bottom parts of the annular
object. The  -integral describes the vertical cylindrical
shell of the inner and outer walls of the annulus. For brevity,
only the K-integrals, which are solved in Schenkel (1991),
are given here:

where          
The function    is (Luke, 1962):

I
 v, w) =   

0

(13a)

where   is the Heuman lambda function,

and

(13b)

The numerical accuracy of the algorithm has been checked
against the analytic solution for a semi-infinite solid cylinder.
The semi-infinite solution was produced by applying the
method of images to the vertical infinite cylinder solution.
Figure 3 is a plot of the potentials versus the normalized
depth  for various conductivity ratios  The
solid lines are the analytic solutions and the symbols are the
corresponding numerical solution. Each numerical solution
represents a particular model with a given length,  of the

solid cylinder and conduction length,  =  Since the
cpu time to invert the matrix is proportional to the matrix
size cubed, we used lengths only long enough to approxi-
mate the infinite length cylinder.

The potentials show an agreement as long as the length of
the cylinder is over four times the conduction length. When
the length of the cylinder is less than this value, the numer-
ical solutions are greater than those calculated from the
analytic solution. We could not approximate the “infinite”
cylinder for such conduction lengths since the number of
cells exceeded our computer memory. However, the poten-
tials did converge as the cell size decreased for a given
cylinder length. When the cylinder is long enough to appear
infinite then the second derivative was accurate. The cell
size AZ must be much smaller than the electrode separation

 to permit numerical accuracy of the second derivative.
The size and number of cells are dependent on the conduc-
tion length of the cylinder and the geometry of the array.
However, a cell size of AZ   is sufficient for less than
5 percent errors in approximating the second derivative.

NUMERICAL RESULTS

For this study, we have used a simple electrode array and
measuring scheme similar to that described in the patent of Vail
(1989a). Two independent sets of measurements from a three-
point electrode array (Figure 4) are required to calculate the
casing conductance, and then the transverse resistance is
calculated from the potential and its second derivative.

For the first array configuration (the calibration or compen-
sation state), the current  is applied at the source electrodes A
and  which are in close proximity to the potential electrodes
M,  and M’. Because of the large contrast in conductivities
between the casing and adjacent formation, essentially all of
the current will flow within the casing. Thus the voltages 
and  measured across their respective electrode pairs, MN
and NM’, will reflect the conductance of the casing between
the electrode pairs. By measuring  and  separately and
knowing the current strength, the conductance for each section
can be estimated from Ohm’s law:

FIG. 3. The potentials on the borehole axis for different
casing conductivity (a,) to formation conductivity (a)
ratios. The solid lines and symbols are calculated from the
infinite solid cylinder and integral equation, respectively.
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 = 
(for  =  2). (14)

This expression assumes no current leakage into the formation.
There may be some leakage if the potential electrodes are
located “too far” from the current source in a highly conduc-
tive formation. In practice, the spacings are on the order of
meters. The numerical calculation of  using equation (14)
agrees with the known values to better than 1 percent.

With the second electrode configuration (the measurement
state), the current electrode B is moved to a remote position
(infinity in theory). Now the current must not only flow in
the casing but also through the formation. The measured
voltages  and  as well as the potential UN, will reflect
both the casing and formation resistivities. By subtracting
the two voltages, an approximation of the second derivative
is obtained. With the estimate of the casing conductance and
the second derivative, the transverse resistance T is calcu-
lated from the discrete form of equation (4).

Casing effects

We first studied the effects of radius and length of the casing
and the position of the measurement array within the casing on
T, the transverse resistance defined above. We used a casing of

  m with length L, outside diameter OD, and thickness
t, embedded in a homogeneous half-space (See Figure 5a). For
this analysis, the separation between the current and center

potential electrode AN is 2.8 m, while the potential electrode
spacing MN = NM’ is 1.4 m.

Figure 5b shows T for a 100 m casing with a variety of
common thicknesses and diameters in a 10  m medium.
Variations in casing thickness resulted in a change of T of
less than 1 percent. However, increases in casing diameter
decrease T as predicted from equation (4) and produced
5-10 percent variations. The effects of the casing length are
dramatic. We used a 0.2286 m (9”) OD, 0.0127-m (l/2-inch)
thick casing, several casing lengths, and variable host for-
mation resistivities of 1, 10, and 100  to calculate the
values of T in Figure 6. When the ratio of the conduction
length to casing length S/L is much larger than 0.5 (this
occurs in a resistive formation), the casing begins to act like
a “short” grounded electrode and T is dependent on the
length of the casing. When this ratio is much smaller than
0.5, the casing looks infinitely long and T approaches the
resistivity of the formation. The plots also show that even for
a long casing, T is not constant along the length of the casing,
but is dependent on the position of the measurement. The
value of T slowly decreases with depth near the surface and
rapidly decays near the bottom of the casing.

The results suggest that the casing diameter, casing length,
and position of the array play a significant role in estimating the
formation resistivity and that in general a correction factor
should be applied to T. Finding a factor to correct for the
geometric parameters is a study by itself and might yield to an

FIG. 4. The two electrode arrays used to calculate the electrical property of the formation. Measurements from the left
configuration determine the casing conductance. The right array measures the potential at electrode N and estimates its second
derivative from three electrodes: M, N, and M'.
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iterative scheme where T is used as a first estimate of the
formation resistivity and then corrections are applied given the
approximate value of  At this time, it may be better to note
that these parameters must be included in the correction factor
to effectively compensate for these casing effects.

Layer response

Figure 7 illustrates the generalized model for investigating
the response to layers. A finite-length conductive casing
filled with fluid embedded in a three-layer medium is used
for this analysis. To simplify computation, a resistivity of
10  is used for the borehole fluid, top layer, and basal
half-space. Thus, only the casing and target bed need to be
modeled. For this problem, the casing, which is modeled
with 1004 segments, has a resistivity of   length of
50 m, inner radius of 0.1 m, and thickness of 1.27 cm. The
target bed, which is approximated with 223 cells, is 3 m thick
with its top located 22 m below the surface. To approximate
a layer of infinite extent, the outer boundary of the layer is
placed at 5000 m. The electrode array is the same as that
used in the previous results (Figures 5 and 6).

The vertical E-fields, shown in Figure 8, are estimated by
dividing the voltage difference between adjacent electrodes
by the electrode separation. For this example, the resistivity
used for the target layer ranged from 1  to 100  m.
Three general observations can be made from this figure.
First, the rate of change of the E-fields is constant for the
uniform, 10  medium and has different slopes for each
resistivity within the target layer. Second, the change in
slope is very small for resistive formations and much larger
in the conductive medium. Last, the discontinuity of the
curves correspond to the formation boundary. As predicted
by Kaufman (1990), even when layers are present the rate of
change of the E-field is proportional to the current leakage
which is related to the electrical resistivity of the formation.
For the conductive layer, the increased rate of voltage drop
results from the increased current leakage into the adjacent
formation. A resistive formation has the opposite effect, and
a decreased rate of change is observed through the layer.

These numerical results for a casing of representative
properties indicate that the E-fields must be measured to the
order of 10’s  per unit ampere, and that very small

FIG. 5. (a) Generalized model of a casing in a half-space and array configuration and (b) the transverse resistance calculated for
several casing thicknesses (t) and outside diameters (OD). The units for t and OD are inches.
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changes in the E-field must be distinguishable. For resistive
formations, an estimate of the resistivity will be very diffi-
cult, if not impossible, since minute E-field changes may be
lost in the noise level. The rate of change of the E-field for a
100  m formation is approximately 0.6 uV/m per meter;
whereas, the changes are significantly larger for IO  and I

 m formations at 2.2 and 14.0  per meter, respectively.
A measurement through casing resistivity log with un-

known casing conductivity is simulated using the parameters
of Figure 7. The separation between current and center
potential electrode AN was 2.05 m, while the potential
electrode spacings MN and NM’ were 1.00 m. The numer-
ical results for several resistivities of the target layer are
illustrated in Figure 9. The transverse resistance curves,

FIG. 6. Transverse resistances calculated for several casing
lengths or conduction lengths. The casing has a thickness of
0.0127 m and radius of 0.1016 m and is in a half-space of (a)
1  m, (b) 10  m, and (c) 100  m. Parameter  is the
conduction length 

FIG. 8. The vertical electric fields estimated for several
resistivities of the target layer (shaded area) and the param-
eters defined in Figure 7.
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calculated by equation (4). respond to the resistivity of the
model remarkably well. The transverse resistance value is
approximately 10-15 percent greater than the resistivity of
the homogeneous (no layer) model as predicted from the
earlier discussion relating to the results of Figure I. When
the target layer is conductive, the difference between the
true resistivity and the transverse resistance is small

 percent). This discrepancy increases for increasing
layer resistivity; for a 100  layer, the transverse resis-
tance is 20-40 percent greater than the layer resistivity.

The vertical resolution can be examined by measuring the
transverse resistance with different electrode spacings at a
layer boundary (Figure 10). Several potential electrode sepa-
rations  ranging from 0.2 m to 3.0 m were used to illustrate
the resolution of the 3 m bed. The parameters shown in
Figure 7 were used for this simulation. This figure shows that
the resolution of the bed boundary improves as the electrode
separation decreases. The distance of resolution is approxi-
mately twice the electrode separation  which is needed to
estimate the second derivative. This again confirms Kaufman’s
prediction; basically the very small departures from purely
radial current Row do cause T to be different from the forma-
tion resistivity but are not sufficient to invalidate the argument
that boundary resolution is set simply by the electrode separa-
tion required to make a satisfactory measurement of the second
derivative of the potential

FIG. 9. The transverse resistance calculated for several
resistivities of the target layer (shaded area) and the param-
eters defined in Figure 7. These results assume that the
casing conductance is unknown.

The “full” response of the transverse resistance is not
achieved until the electrode spacing is less than one-half the
bed thickness     When AZ = 1.5 m. only the
measurement at the bed center attains the full transverse
resistance response. However, one cannot determine if this
measurement is the full transverse resistance response of the
bed since it could be caused by a thinner and more conduc-
tive bed. To remove this ambiguity, several full response
measurements must be acquired. Thus. a layer must have a
minimum thickness of 2-3 times the electrode separation
before the transverse resistance is correctly measured. The
irregularities seen in several curves, especially for the
smaller electrode spacing, are caused by the numerical
instabilities associated with approximating derivatives of
fields that vary very slowly. Fewer cells are incorporated in
the approximation of the derivative for the smaller separa-
tions. In Figure IO, the 0.2-m electrode spacing incorporated
2 cells whereas the case AZ = 3.0 m spanned 30 cells.

In summary, it appears that the presence of an interface
does not cause any significant increase in the nonradial
current Row in the formation as the interface is approached.

Annular layer

For typical resistivity logging methods, increasing the
separation of the electrodes increases the radius of investi-
gation. Since the TCRT’” employs only radial current flow,

FIG. 10. The transverse resistance calculated using different
electrode separations. The values in the parentheses are the
electrode spacings normalized by the bed thickness (3 m).
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at least to first order, it should have no sensitivity to the
presence of uniform annular regions of varying conductivity.
In this section, we will investigate the effects of an annular
layer, which can represent a cement layer, on the transverse
resistance (T) measurements. Kaufman (1990) determines T
in the presence of an annular layer by assuming only a radial
current distribution outside the casing and thus employs a
series resistance calculation of T:

  
     

 
(15)

where  is the series resistance calculation of T, a,. is the
inner radius,  is the thickness, and  is the resistivity of
the annulus and  is the resistivity of the host medium.

Figure II shows  compared to T, computed numeri-
cally, for selected electrode separation distances as a func-
tion of the annulus thickness for a conductive (5  m) and
resistive (20  m) annulus. Although T is larger than T,, the
behavior of the resistances generally agrees with each other.
For a thin annulus, the resistance approaches the back-

FIG. 11, Model of 50 m casing in a 10  m host (a) used to
calculate  the series resistance, and T, transverse resis-
tance, for several annular thicknesses (b). The transverse
resistances are calculated for several electrode spacings and
the center electrode is fixed at 2 m. The resistivities of the
annulus are 5  m and 20  m.

ground medium resistivity. As  increases, T asymptotes to
the annulus resistivity. There are nearly no variations of T
for a given thickness. This indicates that within the numer-
ical accuracy, the radius of investigation is nearly indepen-
dent of the electrode separation for a uniform annulus. Once
again, departures from radial current Row are so small that
effects from the parallel longitudinal resistances of annular
layers are negligible. When the hole is cased, the combined
resistivity measured in the presence of the annular layer
cannot be distinguished from a formation that has an equiv-
alent resistivity since modifying the electrode spacing does
not change the radius of investigation.

The effects of thickness variations of the annulus in a
homogeneous medium are illustrated in Figure 12. The
model used for this simulation is a 50-m long casing sur-
rounded by a 20  annulus that has two thicknesses of
1.0 m and 0.2 m for the upper and lower section of the casing,
respectively. Three resistivities of 1  5  m, and
10  are used for the host formation. For low host
resistivities, T agrees with  calculation to within 10 percent.
As the host medium resistivity increases, the change of T on
the thick side is less dramatic than the  calculations. These
results are compatible with the effects of a finite casing length
as shown in Figure 6. There is a small fluctuation in T as the
array approaches the discontinuity from the thin side. This may
be caused by the small distortion in radial flow as the step in the
annulus is approached, but it seems unlikely that this could be
detected in real data.

These analyses all show that at least to first order all the
current flow in the formation adjacent to the casing is radial.
The small longitudinal currents, which in fact explain why
the computed values of T from equation (4) do not exactly
equal the formation resistivity, are insignificant compared to
the radial currents seen outside the casing.

Effects away from the borehole

On another scale, the currents that leave the casing
radially can readily be distorted by features away from the
borehole and can distort the measured potentials at some
distance away from the hole. To illustrate this phenomena,
we calculated the potentials along a vertical line (another
uncased borehole) 100 m away from the cased hole with a
current source  (Figure 13). For this simulation, we
substituted an annular disk of thickness 2 m and radii of 25
and 50 m for the layer that we studied previously for the

 In Figure 14, we show the results for an uncased
well and the difference in potential with and without the disk
expressed as a percentage of the field without the disk. In the
second simulation, we calculated the same difference but
with casing present. The effect of the conductive annulus is
much greater for the cased hole. This result shows that
crosswell resistivity measurements, using one cased well,
are more sensitive to the parameters of the annular targets
(such as steam injection zones) than measurements using
uncased wells.

The explanation for this result lies in the analysis of the
current vectors for each simulation as shown in Figure 15. In
the uncased well, the conductive annulus simply keeps the
current channeled in the annulus and increases the potential
and decreases the “spread” in the adjacent well. For the
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cased well, the current source is a distribution of radial
currents which, without the annulus, yields a very broad
potential field in the adjacent hole. The annulus “collects”
this current and creates a larger and shaper potential distri-
bution which, it turns out, is relatively greater than its
uncased counterpart.

CONCLUSIONS

This numerical study of the through casing resistivity
apparatus has demonstrated that the approximation used by
Vail (1989a b) and Kaufman (1990) to determine the forma-
tion resistivity depends very much on the length of the
casing and on the position of the measuring apparatus within
the casing. Even in a casing that is effectively infinite
(several times longer than its conduction length), there is
enough longitudinal current outside the casing to cause
significant errors in the estimation of formation resistivities
for typical casing parameters. On the other hand, the reso-
lution of a layer boundary, or the response to a layered
annulus or to annuli of varying radii, is accurately described
under the assumption of purely radial current flow. Thus the
layer boundary resolution is set by the electrode separation
and the measured resistance of a layered annulus, such as a
cement layer or cement layer plus invasion zone, is simply
described by the equivalent series resistance and is com-
pletely independent of the electrode spacing.

For typical casing conductances and formation resistivi-
ties, the approximate formulas for the formation resistivity
have errors of up to 60 percent which, for many applications
where relative changes between formations may be of inter-
est, may be good enough. For more accurate estimates some
iterative scheme will have to he developed where the casing
parameters, casing length, and position of the measuring
array within the casing are used in a process of refining the

formation resistivity first estimated with the approximate
formula.

This study has also shown that a cased well may he used
very effectively in crosshole resistivity surveys. In this
application, the radial currents from the cased hole produce
greater relative distortions in the potentials in an adjacent
uncased hole for a simple target than do the point source
currents from an uncased well.
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FIG. 13. Configuration for the crosshole resistivity monitor-
ing simulation of an injection process.

FIG. 12. Model configuration of cement annulus with variable thickness in an homogeneous host (a). Series resistance, 
(dashed line) and transverse resistance, T, (solid line) for a 1  5   and 10  host medium (b).
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FIG. 14. Plots of the potentials (a) and percent difference
between the background and injection potentials (b) for
plume only (circles) and plume/casing (squares) for 25 m
(black) and 50 m (white) plumes. The pre-injection potentials
are the dashed lines (with casing) and solid lines (without
casing).

FIG. 15. Current patterns in the medium and conductive
plume for the mise-a-la-masse, point source in an uncased
hole, (a) and energized casing (b) configurations.
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